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1. Introduction.

Many applications in science and enginering involve mixed systems of differential and

algebraic equations (DAE's). For some examples see, for instance, the monograph [BCP89].

It is hardly surprising that such systems share many properties with ordinary differential

equations (ODE's). In fact, recent existence theories ([Rh9l], [RR91a], [RR91b]) have

shown that, in general, a DAE can be reduced locally to an (explicit) ODE on some

submanifold of the space of unknown variables.

However, despite the strong analogy between DAE's and ODE's, important differences

exist. For instance, from the fact that DAE's are reducible to ODE's only on some sub-

manifold of the solution space it follows that solutions of a DAE can pass only through

points on such a submanifold; that is, its initial values must satisfy certain compatibility

conditions. Beyond this, solutions of DAE's may exhibit features that solutions of explicit

ODE's cannot possess. For instance, the simple problem

z2 =0,2=l x(0)=(1, -1)
r1 +X 2 =0, -i=1, =(, 1

has the unique solution x(t) = ((1 - 1)1/2, t - 1) which cannot be continued beyond t = 1

despite the fact that x(1) = (0,0) and lim,_I - x(t) = x(l) exist. This situation would be

impossible for solutions of explicit ODE's.

'The work was supported in part by ONR-grant N-00014-90-J-1025, NSF-grant CCR-8907654, and

AFOSR-grant 900094.
2 Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260
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In the electrical engineering literature such type of points have been called impasse

points (see e.g. [C69] or [CD89] where also other references are given). Although they

have no analog in connection with explicit ODE's they are closely related to the "singular

points" of implicit ODE's. In [Ra89] the most often encountered type of such singularities

for implicit ODE's was analyzed, called there standard singular points. In a recent paper

[RR92a] it was shown that the geometric reduction theory for DAE's presented in [RR91b]

allows for a generalization of the results in [Ra89] to so-called standard impasse points of

quasilinear DAE's.

The aim of this article will be to show that the theory of [RR92] leads naturally to

the development of a computational procedure for the explicit computation of standard

impasse points of quasilinear DAE's. For this we outline, in Sections 2 and 3, briefly and

without proof, some of the relevant results for singular ODE's and DAE's from the cited

earlier papers. Then Section 4 presents the details of the computational algorithm and

finally in Section 5 we give some numerical examples which show the effectivity of the

process.

2. Singular Points of ODE's.

Definition 2.1. Consider a quasilinear problem

(2.1) B(y) I = H(y), y(O) = yo

where B : D -+ £(R") and H : D -+ R' are C 1 on some open set D C R". A point y E 1)

is a regular point of (2.1) if rank B(y) = n and a singular point if rank B(y) < n but y is

a limit point of regular points of (2.1).

Clearly, for a regular point Yo E D the initial value problem (2.1) has a unique solution

in a neighborhood of yo. But already simple examples show that the behavior of the

solutions of (2.1) in a neighborhood of a singular point yo may vary strongly with the

type of singularity encountered there. A partial classification of singularities which will be

sufficient for our plirposes is given next:



Definition 2.2. (i) A singular point y E E) of the ODE in (2.1) r-singular if

(2.2) dim ker B(y) = r.

(ii) A 1-singular point is called basic if

(2.3) H(y) rge B(y).

(iii) A basic 1-singular point is a standard singular point if

(2.4) DB(y)(u,u) rge B(y), Vu E kerB(y) , {O}.

We summarize here briefly the theory developed in [Ra89] for the case of standard

singular points (see also [RR92]). With a standard singular point Yo as starting point the

initial value problem (2.1) cannot have a C1 solution y : J --+ V on an open interval J

containing the origin. In fact, this would require that B(yo)y(O) = H(yo) which contradicts

(2.3). Thus at a standard singular point we may expect at best "one-sided" solutions in

the following sense:

Definition 2.3. W1ith a standard singular point yo E V as starting point a solution of

the initial value problem (2.1) is any continuous function y : J --+ D defined on an interval

J = [0, T) or J = (-T, 0] for some T > 0 which is of class C1 on Jo = J ". {0} and satisfies

y(O) = Yo and B(y(t))P(t) = H(y(t)) for t E JO.

With

(2.5) a(y)(u, v) = (vTH(y)) (vTDB(y)(u, u))

the two conditions (2.3) and (2.4) for a standard singular point y are equivalent to

(2.6) a(y)(u,v) 6 0, Vu E kerB(y)\ {0}, v E kerB(y)T N {O}.
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Since (2.5) is a continuous, quadratic form in u and in v its value must be either positive

or negative for all pairs of nonzero vectors u E kerB(y), v E kerB(y)T if only this holds

for one such pair of vectors.

The principal existence result for solutions near standard singular points can now be

phrased as follows (see [Ra89, Theorem 5.1])

Theorem 2.1. Let Yo E D be a standard singular point of the ODE in (2.1). Then the

initial value problem (2.1) has exactly two solutions which ai e both defined on J = [0, T)

or on J = (-T, 0] for some T > 0 depending upon o(yo)(u,v) > 0 or ca(yo)(u,v) < 0,

respectively, for some pair of nonzero vectors (u,v) E kerB(y) x kerB(y) T . Moreover,

11p(t)ll tends to infinity as t E J -, {0} tends to zero.

Theorem 2.1 implies that a solution of (2.1) starting at some regular point can reach

a standard singular point yo at some later time only if the form (2.5) is negative at y0 .

Standard singular points Yo with positive a(Yo) obviously can never be reached in increasing

time. Thus, in view of the theorem, the following notation is appropriate:

Definition 2.4. A standard singular point Yo of (2.1) is accessible or inaccessible if

a(yo)(u,v) < 0 or a,(yo)(u,v) > 0, respectively, for some pair of nonzero vectors

(u,v) E ker B(y) x ker B(y) T .

The theorem asserts that accessible standard singular points are reached in finite time

by trajectories emanating elsewhere in V. Since these trajectories cannot be continuously

extended beyond these points, they represent "catastrophes" for the solutions of (2.1) and

standard ODE-solvers fail near such points. It can also be shown (loc. cit.) that no small

perturbation of the initial condition (and/or of B or H) can affect the eventual encounter

of such points.

Standard singular points are analogous to limit points of parametrized nonlinear equa-

tions

F(z,A) = 0.

Suppose, indeed, that F : E) -+ R" is of class C' on some open set E) C R" x R' and

that z : J -- R" is a C1 mapping on an open interval J such that (z(A),A) E E) and
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F(z(A), A) = 0 for A E J. Then

(2.7) (DF(z(A\),,) 0) z'(A)) ( D,\F(z (A), A))=0

where primes indicate differentiation with respect to A, and hence (2.7) is an ODE of

the quasi-linear form (2.1). The singular points of (2.7) are exactly those (z, A) E E) for

which rank DF(z, A) < n; that is, which are foldpoints of F with respect to A (see e.g.

[Rh86]). The simplest foldpoints are the limit points for which dim ker D.F(z, A) = 1 and

DAF(z, A) rge D 2F(z, A). Obviously, these two properties correspond to the conditions

(2.2) and (2.3) and it is readily checked that (2.4) holds exactly for the simple limit points

of F (with respect to A), (see e.g.[Rh86]).

Foldpoints of a parametrized nonlinear system are typically computed by solving a

suitably augmented form of the system. It is natural to consider the same approach for

the computation of singular points of ODE's.

Let y = y(t) be a Cl-solution of (2.1) and suppose that a C1 function r : R 1 - R1 with

strictly positive derivative is used to define a transformation t = r(s) of the independent

variable t. Then 77(s) = y(r(s)) satisfies

B =() drH(q).
ds Ts )

By Theorem 2.1 the derivative dy/dt becomes infinite when the solution approaches a

standard singular point y*. This suggest that r should be chosen such that drids tends to

zero as we approach y* but dri/ds remains bounded. For instance, we may wish to specify

7 implicitly by using a normalization cT(dr7/ds) = 1 with a suitable vector c E R".

This normalization may be obtained by means of an augmented system of the form

where c E R' is chosen such that at a point E D under consideration the matrix of (2.8)

is nonsingular. Certainly, such an augmentation can be found if and only if is either a

regular point of (2.1) or a basic 1-singular point.
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Hence the matrix of (2.8) remains nonsingular for all y in some open neighborhood

U C V of whence for fixed y E U the solution (v(y),,y(y)) E R"+ of (2.8) is unique.

Obviously we have v(y) 0 0 for all y E U and y(y) 0 0 for all regular points y E U of (2.1).

Moreover, because of (2.3) we see that y(y*) = 0 at any basic 1-singular point y* E U.

For any regular point yo E 14 the initial value problem (2.1) has a unique, local C'-

solution y : [0, T) --+ U for some T > 0. Suppose that y(yo) > 0. Then -,(y(t)) > 0 for

0 < t < T and the initial value problem

dt
(2.9) = (y(t)), s E [0, T), t(0) = 0,

has a unique, monotonically increasing solution r : [0, a) -+ R' with 0 < a < T. Hence,

as desired, r defines a transformation of the independent variable t of (2.1). As before, we

set

(2.10) 77(s) = y(r(s)), s E [0,o), 77(0)= Yo.

Together with (2.9) the chain rule provides that

(2.11) =Y(77(s)) dy s E (0, a)

whence by (2.1) and (2.8) it follows that

dy
B(y(t)) [(y(t))t (t) - v(y(t))] = 0, 0 < t < T;

and therefore, by (2.10) and (2.11), that

(2.12) -(S) = v((s)), 77(0) = Yo, s E [0, a).
ds
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Proposition 2.1. Suppose that the solution y = y(t) of (2.1) tends to some standard

singular point y* E U and hence has been extended to a maximal interval [0, T*) such

that limt-T' y(t) = y*. (Necessarily, y* is a basic 1-singular point since the matrix of the

augmentation (2.8) is invertible at y* by hypothesis). Then (i) there exists o* < oo such

that the solution t = r(s) of (2.9) is defined for s E [0, o*) and that lim_-., r(s) = T*.

(ii) The solution of (2.12) is defined and of class C' on [0, u* + E) for some E > 0. (iii) If,

in addition y* is a standard singular point, then y(r(s)) changes sign as s crosses a*.

Proof: Let J denote the set of all a such that there exists a Cl-solution of (2.9) for

s E [0, d) satisfying 0 < r(s) < T* on that interval. Clearly, J is not empty and hence

0* = sup{ : & E J} is well defined. Thus there exists a C'-solution of (2.9) for s E [0, a*)

satisfying 0 < r(s) < T* on this interval. In order to show that liram,. r(s) = T* note

that 7 remains monotonically increasing on [0, a*) and hence that lim,_,. r(s) = r* < T*

exists. Suppose that 7* < T*. Then, by the continuity of 7, the compactness of y([O, r*]),

and the fact that -y(y(t)) > 0 for t E [0, T*), it follows that there exists a positive constant

7Yo for which 7(y(t)) > -o in [0, T*). This implies that a* < oo, for otherwise r(s) > 7os

for s E [0, oo) and hence lim,o 7(s) = oo in contradiction with 0 < r(s) _ r* < 00 for

s E [0, o*) = [0, oo). But now, by setting r(a*) = r*, we can define a continuous extension

of r to some interval [0, o* + E] with sufficiently small e > 0 such that 0 _< r(s) < T*.

Thus, assuming r < T* we obtain a contradiction with the maximality of o*. This shows

that r* = T*.

The above arguments show only that a* < oo, but we can show that a* < c. In fact,

assume, to the contrary, that * = oc so that 77 is defined in [0, oo). Since by construction

cTv(77(s)) =_ 1 it follows from (2.12) that cT(du/ds)(s) =_ 1 whence cT7,(S) = cTyo +s. This

implies that lims JcT (s) = oc and hence also that lim,-_, 1177(s)ll = oc. But then we

arrive at a contradiction since 1171(s)l[ = j[y(r(s))[ and tly(t)i is bounded on the compact

interval [0, T*]. This proves (i).

It follows from (i) that (2.12) has a unique solution 7 for s E [0, u*) and q(o,*) = y*

defines a continuous extension of 77. Therefore, the solution of (2.12) can be extended to a

larger interval [0, a* + E) with some E > 0 as claimed in (ii).
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As noted earlier, we have -y(r(s)) > 0 for 0 < s < a* and y(77(or*)) = -(y*) = 0. Thus

a* is the first zero of 7(r(s)) in [0, a* + E). If now y* is a standard singular point, -(q(s))

must change sign as s crosses a*. For this note that by differentiation of

B= y(7(s))H(77(s)), s E [0, o,

together with "y(y*) = 0 we obtain for all h E Rn that

DB(y*)(h, v(y*)) + B(y*)Dv(y*)h = (D-t(y*)h)H(y*).

For h = z(y*) :# 0 and any nonzero vector w E ker B(y*)T it follows from (2.5) and (2.6)

that
wTDB(y*)(v(y*), v(y*))_ a(y*)(v(y*), w)D-y,(y*)v =WT(y*) (WTH(y*))2

Since d(y" oq)/ds)(o.*) = D7(y*)v(y*), this proves that indeed (-o r)(s)) must change sign

as s crosses o*. [

Altogether, therefore, by solving (2.12) and monitoring the first sign change of Y(rl(s))

we can calculate a* and hence y* = r)(a*). The value of T* is then given by

(2.13) T*= j(r(s))ds,

which follows directly from (2.9) and lim,-.. 77(s) = T*.

The augmentation procedure described here is designed to work in the neighborhood

of a standard singular point. But in practice, also higher order singularities y* E E) are

encountered where the matrix of the simple augmented system (2.8) becomes singular. In

order to avoid difficulties near such points, we may work with an overdetermined augmented

system of the form

B(y) -H(y) E _w(y)T 0,,×q
(2.14) C TB0 Z(y) T - .q "
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Here, for given q, 1 < q < n, the matrices E and C have dimension n x (q - 1) and n x q.

respectively, and, correspondingly, in the solution. V(y), w(y). and Z(y) are blocks of size

n x q, q x 1, and q x (q - 1), respectively. As before, the matrices E and C are chosen such

that at some "current" point Yc E D the matrix of (2.14) is nonsingular and hence remains

nonsingular for all y in some open neighborhood 1, C E of Yc Thus. for each y E Uc

the solution of (2.14) is unique.Clearly, for sufficiently large q this can be accomplished

irrespective of dim ker B(y,) and even in the case when H(y,) E rge B(yc): (except when

H(y,) = 0; but see Remark 2.1 further below).

We summarize some basic properties of the augmentation (2.14):

Proposition 2.2. For given q > 1 and y E 1, the solution of (2.14) satisfies

(2.15) dim ker B(y) = dim ker (w(y), Z(y)),

and rank Z(y) = q - 1 implies that rank (B(y), -H(y)) = n. The converse holds if

H(y) rge B(y) (and hence y is a basic 1-singular point).

Proof: Generally, for y E Uc we have

(2.16) B(y)V(y) = (H(y), -E)(w(y), Z(y)) T ,

as well as rank V(y) = q (since CTV(y) = Iq) and rank (H(y), -E) = q (since the matrix

of (2.14) is invertible) which together imply the first assertion. Indeed, since both V(y)

and (H(y), -E) are n x q, q < n, and have maximum rank q, we infer from (2.16) that

dim ker B(y)V(y) = dim ker (U,(y), Z(y))T = dim ker (w(y), Z(y))

(recall that (w(y), Z(y)) is q x q). Moreover, using again the fact that ker V(y) = {0}. we

see that

(2.17) dim ker B(y)V(y) < dim ker B(y).
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Thus, to complete the proof of (2.15), it suffices to show that the converse inequality of

(2.17) holds. This follows at once if we can show that ker B(y) C rge V(y). For this let

u E ker B(y), so that

(21)B(y) -H(y) E 01XI = .X
(2.18) C T  0' 0 c xl

O(q-1) xi

On the other hand, CTVI(y) = I. implies that CTV(T)CTu = CTu and hence, by (2.16),

that

B/ ) -Hy \ (Y )CTU \,"X
(2.19) C rT 0 )(W(Y) T C TU)( CT11"

Z(y)TCTU

But the systems (2.18) and (2.19) have the same right hand side, and hence. because the

matrix is invertible, the solutions are identical whence, in particular, u = I(y)CTu and

therefore u E rge V(y).

If rank Z(y) = q - 1 then rge EZT = rge E. Therefore, rge E C rge (B(y), -H(y))

and ...r, rge (B(y), -H(y), E) = rge (B(y), -H(y)) which for rank ,,,;.-H(y)) < a

contradicts the nonsingularity of the matrix of (2.14).

To prove that. conversely, rank (B(y),-H(y)) = n and H(y) rge B(y) imply

rank Z(y) = q - 1 suppose that H(y) rge B(y) and rank Z(y) < q - 2. so that

dim ker Z(y)T > 2. Let u,, a = 1, 2 be two linearly independent vectors in ker Z(y)T.

By (2.16) we have

B(y)V(y)U. = (w,(y)TU,)H(y), a = 1.2

and hence w(y)TU, = 0, a = 1, 2, since H(y) 0 rge B(y). Thus u , E ker (w(y). Z(y))T.

a = 1, 2. By (2.15) the linear independence of the two vectors implies that dim ker B(y) _

2. which in turn implies that rank (B(y), -H(y)) < n. 0

For y E U, and any nonzero vector a(y) E kerZ(y)T we have

(2.20a) B(y)v(y) = -i(y)H(y), c(y)TV(y) = a(y)To(y).

(2.20b) Z'(y) = V(ya(y). c(y) = Ca(y). _/(Y) = w(y)T (y).
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This has the general form of (2.8), and as before, y(y) = 0 implies that B(y) is singular.

But, the converse is not necessarily true. Moreover, the vector a(y) must depend smoothly

on y. This is easily guaranteed as long as rank Z(y) = q - 1 but is not generally feasible

unless we drop the assumption that a(y) : 0. Let Z'(y) denote the (q - 1) x (q - 1)

submatrix obtained from Z(y) by deleting the i-th column. Then the vector

(2.21) a(y) = (a 1 (y),... ,aq(y))T, ai(y) = (-1)'det Z'(y), i = 1,... ,q,

obviously depends smoothly on y and satisfies Z(y)Ta(y) = 0, (see e.g. [S73], Appendix

II). Moreover, we have a(y) : 0 exactly if rank Z(y) = q - 1.

For this choice of a(y) the following result holds:

Proposition 2.3. For y E Uc and with the vectors (2.21) consider the relations (2.20).

Then y (y) = 0 exactly if B(y) is singular.

Proof: If -y(y) = 0 then either rank Z(y) < q - 1 in which case, by (2.15), B(y) is

singular, or rank Z(y) = q - 1 whence a(y) 54 0 and thus also v(y) 5 0 which together

with B(y)v(y) = 0 implies again that B(y) is singular. Conversely, suppose that B(y) is

singular. In the case rank Z(y) = q - 1, we have again v(y) : 0 and Proposition 2.2

ensures that H(y) rge B(y). Thus the first equation (2.20a) leads to a contradiction

unless 7(y) = 0. On the other hand for rank Z(y) < q - 1 we necessarily have -y(y) = 0

because a(y) = 0 in that case. 0

By Proposition 2.2 we see that when B(y) is singular and H(y) E rge B(y) then

necessarily rank Z(y) < q - 1. Such points are evidently not standard impasse points,

and hence constitute "higher" singularities. Our choice (2.21) of a(y) evidently transforms

these points into equilibrium points of the dynamic system (2.12) with v as in (2.20b).

Computationally the simplest case arises with q = 2 where (2.14) has the form

/By -H(y) e (v1(Y) V2 (Y)00

(2.22) C (Y) 2 (y) 1

0 0) (Y) Z2(Y)



Hence, the vector (2.21) becomes here a(y) = (-z2(y),zl(y)) and we obtain

Iv(y) = Z2(Y)VI(Y) -lYV()

(2.23) Y(Y) = z2(y)w 1 (y)- z1(y)w 2(y),

c(y) = Z2(Y)CI(Y) -ZI(Y)C 2 (Y).

Proposition 2.3 implies that -y(y) does not vanish on a trajectory terminating at a singu-

lar point y* E dc. Obviously (2.22) has the same general form as the simple augmentation

(2.8) and the computational procedure is the same as before, namely, we form and solve

the explicit equation (2.12). The only difference is that the normalization condition now

involves the nonconstant vector c(y) while in (2.8) this vector was constant.

The constancy of c was used to prove that for a basic 1-singular point there exists a* < oo

such that the solution t = r(s) of (2.9) is defined for (0, a*) and that !ims-,- r(s) = T*.

The result is easily extended to the case when c depends on y. For this note that the

proof of the existence of a* < oo carries over verbatim z- ' irrespective of the singularity

encountered at y*; all that is needed is that the matrix (2.22) be invervible at y*. Now if
V* is a basic 1-singular point and a* = oo we conclude from c(r7(s))Tv( 7 (s)) = lIa(y)I 2

2

that c(y*)Tv(rq(s)) >2 E > 0 for all s close to a*. Indeed, rank Z(y*) = q - 1 by Propo-

sition 2.2 and hence a(y*) # 0. In other words, for sufficiently large s it follows that

c(y*)T(dir/ds)(s) > e and therefore that c(y*)Tri(s) > E(s - SO) + c(y*)Tr(so) for s > so

and so large enough. As before, this contradicts the boundednes of IIr(s)JI for s > 0.

If y* is a standard singular point, then -y(t7(s)) changes sign as s crosses a*. Obviously,

if y* is not a basic 1-singular point then we can no longer ascertain that a* < oc.

Remark 2.1 The matrix of any augmentation (2.14) and, in particular, that of (2.8)

or (2.22), will be singular at any point y E 14 where H(y) = 0; that is, at any stationary

(equilibrium) point of the autonomous ODE (2.1). This reflects the fact that any regular

stationary point can be reached only in infinite time and hence our scale-transformation

must become indetermined along such trajectories. Clearly, the natural resolution of this

difficulty is to make the system (2.1) non-autonomous by adding the equation f = 1.
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3. Singular Points of DAE's.

In this section we turn to differential-algebraic systems of the following form:

Definition 3.1. T.ie equation

(3.1) A(x) =G),

with C 2 mappings A : E) -+ L(R n ) and G : V -- R' on some open set 1) C R' is a

quasilinear DAE on V if

(3.2) G(x) E rge A(x), x E E == rank A(x) = r

and if the mapping

(3.3) (x,p) E D x R' A(x)p - G(x) E R",

is a submersion.

The submersion property of (3.3) requires that for every (x, p) E E) x R n the mapping

(3.4) (h, k) E R xn x R n (DA(x)h) p + A(x)k - DG(x)h E R n ,

is onto (see e.g. [AMR88]). As a consequence the set

(3.5) M = {(x,p) E E x Rn: A(x)p - G(x) = 0}

is a closed n-dimensional C 2 -submanifold of V x R .

In [RR91b] a geometric procedure was developed for reducing an implicit DAE F(x, i) =

0 to a system of ODE's on a manifold locally near a point (x 0 ,p ° ) E F-'(0). A simplified

version of this reduction process for quasilinear DAE's (3.1) is given in [RR92]. In that

case the reduction is local only in the first variable due to the linearity of the equation in

x. We summarize briefly this process for (3.1).
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Set

(3.6) W = {x E V: G(x) E rge A(x)},

so that (x,p) E M if and only if x E W and hence W = 7r(M) where 7r : D x R" --4 R n is

the projection onto the first factor. Under the conditions of Definition 3.1 it can be shown

(see [RR92], Proposition 3.1) that W is an r-dimensional C2 -submanifold of 79 and that

W is closed in V if the set {x E V9: rank A(x) = r} is closed in V..

For any Cl-solution x J - E) of (3.1) on an open interval J C RI we must have

x(t) E W for t E J and thus (x(t),i(t)) E TW for all t E J where we view here the

tangent bundle TW as a subset of TR n = R n x R n . Hence (x(t), i(t)) E M implies that

(x(t), i(t)) E TW n M for all t E J. The desired reduction of (3.1) now requires a (local)

characterization of TW n M.

For this let x ° E W. Then there exist open subsets U C W and V C R' and a C2 -map

V --* R n which is a diffeomorphism of V onto U. In other words, (- 1 is a chart of W

at x ° .

Evidently, U and V may be chosen small enough such that there is a linear subspace

Z0 C R n which complements rge A(V(y)) for all y E V. Let P 0 be the projection of R n

onto rge A(x ° ) along Z ° and L' any linear isomorphism from rge A(x ° ) onto R'. Then

L ° o P 0 is a linear isomorphism of rge A( p(y)) onto R' for all y E V and it follows that

x = p(y), p = Dp(y)q,
{(xp)ETWflM, XEl} {B(y)q - H(y) = 0,

where we have set

(3.7) B(y) = L°P°A(p(y))DV(y), H(y) = L°P°G(p(y)).

Evidently, the operators B and H map into £(R r ) and R', respectively, and are of class

C 1.

14



If the interval of definition J C R1 of the solution is restricted to ensure that x(J) C U

and therefore that (x(t), ;(t)) E TW n M and x(t) E U for all t E J, then the C' function

(3.8) y: J --+ V, y(t) =- -1 ox(t),

is a C'-solution of the equation

(3.9) B(y) = H(y),

called the reduction of (3.1) near xA. Conversely, for any C'-solution y : J -+ V of (3.9)

the function x(t) = o y(t) is a Cl-solution of (3.1).

Evidently, if B(y) is invertible in a neighborhood of y0 = V-1 (x0 ) then (3.9) satisfies the

conditions of Definition 2.1 and the augmentation procedure of Section 2 can be applied.

This is the case when (3.1) has index 1 in the sense of the following definition:

Definition 3.2. The quasilinear system (3.1) is a nonsingular DAE of index 1 if

(3.10) {x E W, G(x) E rge A(x)ITW } =. rank A(x)T-w = rank A(x)(= r).

From (3.10) it follows that B(y ° ) E GL(Rr, rge A(x 0 )) and Dc2(y ° ) E GL(Rr, ToW)

and this provides the basis of the following existence and uniqueness theorem for (3.1):

Theorem 3.1. Let (3.1) be a nonsingular DAE of index 1. Then, for any x0 E TV, =

7r(TW n M) C W there exists a unique C1 solution x : J --+ D on some open interval J

containing the origin, of the initial value problem

(3.11) A(x)i = G(x), x(O) = x

Moreover, no C' solution of (3.11) exists for x°  W,.

Definition 3.2 does not rule out the existence of points x° E W where rank A(x')IT 0 w <

r. Such points do not belong to the set TV, = ir(TW n M) and hence no C' solution to the

corresponding initial value problem (3.11) exists. Nevertheless, in analogy to Definition

2.3 'one-sided' solutions may well occur at such points:

15



Definition 3.3. A solution of the initial value problem (3.11) at a point x ° 0 7r(T1Vn flA)

is any continuous function x : J --- E) defined on an interval of the form J = [0, T) or

J = (-T, 0] for some T > 0 which is of class C' on JO = J -, {0} and satisfies x(t*)- x*

and A(x(t))i(t) = G(x(t)) for t E J0 .

In [RR92] a precise definition of accessible and inaccessible impasse points of nonsingular

DAE's of index 1 (and higher) is given where the existence of one-sided solutions can be

guaranteed. We shall not repeat this theory here but summarize the main result in the

form of the following theorem: (see [RR921, Lemma 5.1 and Theorem 5.1):

Theorem 3.2. Let (3.1) be a nonsingular DAE with index 1. The point x ° E W is an

accessible or inaccessible impasse point of (3.1) if and only if 0 = - 1 (x o ) is an accessible

or inaccessible standard singular point, respectively, of the reduction (3.9) of (3.1) locally

near x ° . Then, the initial value problem (3.11) has exactly two solutions in the sense of

Definition 3.3, both defined either on J = [0, T) or J = (-T, 0] for some T > 0. Moreover,

I[i(t)l[ tends to infinity as t tends to zero.

Because Cl-solutions of a (not necessarily nonsingular) DAE (3.1) lie in W, = 7r(W n

TM), their closure relative to the open set V C R' must lie in W when V is closed in

D. This is the case in many practical applications but, mathematically, it is not the only

possibility. When 1V is not closed in E) it becomes possible for points x' 7 T' to be

reached in finite time by C'-trajectories that cannot be continuously extended beyond

x ° . Likewise, there may be points x ° E W corresponding to higher singularities of the

reduction; that is, with dimkerB(y ° ) > 1, at which C' trajectories stop.

As an illustration we consider the first and third example of [CD89] which have the form

100

with2

G,(x)= X3 , 2(x) X)

+ + + +
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I

I Hence, in both examples the conditions of Definition 3.1 are satisfied with r = 2. Moreover,

we have

W={xER3 : z3(X2

and, evidently, the mapping

Ip : R R, (P(Y) " -YI), D(y) =(-1 0

-Y2 0 -1

is here a global diffeomorphism from R2 onto W. Therefore, with the linear isomorphism

L0P0= (0 0)\

the reductions of the two problems have the form

I Y2 yj +3y2)Y.H(y), =,

where

Obviously, in both cases, the singular points form the one-dimensional manifold

I

and we have dim ker B(y*) = 1 and rge B(y*) = span (y*,-1)T for y* E K. Moreover,

for j = 1 we see that H(y*) rge B(y*) for all y* E K with y2 5 -1 while for j = 2 we

have H(y*) E rge B(y*) for all y* E K. Thus, in the second case, none of the points of

K is a standard impasse point. On the other hand, for j = 1, a simple calculation with

u ( 0 ,1)T E ker B(y*) and v = (1, y)T E ker B(y*)T shows thatI
a(y*)(uv) = -6(y 2( +

17
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I

I whence, all points y* E K with y* # 0, -1 are here standard impasse points which are

accessible for y2 > -1, y2 i 0 and inaccessible for y2 < -1.

Thus, for j = 1 the points y* E K, y* = 0,-1 and forj = 1 all points y* E K are

I higher singularities. In both cases, y* = 0 is also a stationary point. The differences

between these higher singularities and the standard impasse points in the first example

were observed in [CD89] but explained differently.

I 4. Computation of Singular Points of DAE's.

The reduction process for quasilinear DAE's sketched in the previous section and the

I resulting theory of impasse points for nonsingular DAE's of index 1 suggests that we

may compute such points by applying the augmentation approach of Section 2 to the

reduced system (3.9). In this section we show that this does indeed lead to an efficient

computational algorithm.

I For simplicity we develop the method only for DAE's of the following form occurring

frequently 
in applications:

Here A 1 : E --, £(Rr), G, : E) -- R', G 2 : ) R, are C 2-maps on some open set E C R',

Iwith n = r + p, p > 0, and (4.1) is assumed to be a quasilinear DAE in the sense of

Definition 3.1.

The submersion condition for the mapping (3.3) requires that rank DG 2(x) = p for

x E D and hence that the set

(4.2) N={xED: G 2 (x)=0}

is an r-dimensional C 2 -submanifold of S.

The manifolds (3.5) and (3.6) are here given by

I (4.3) A = {(x,p) E D x R": x E N, Al(x)p = GI(x)}

(4.4) IV = {x E N: rank A,(x) = r}.

18



and this allows for a considerable simplification of the reduction process. As in [Rhs6] we

introduce at any "current" point x, E N a tangential local coordinate system. For this let

= U(C) E £(R' , R") define an orthonormal basis of ker DG 2('c). T-ieii the implicit

function theorem applied to the equation

(4.5 ) G 2 (x, + Ucy + DG 2 (Xc)Tz) = 0, y E Rr , z E R

Iguarantees the existence of open neighborhoods U, of the origin of Rr and V, C R" of

X, such that for any y E 1-4 there exists exactly one solution z of (4.5) with xc + Ucy +

I DG2(xc)Tz E V, and that the mapping 0 : Uc F-+ R P , VI(y) = z is of class C' on c.

Evidently, we have 0(0) = 0 and DP(0) = 0 and

i (4.6) 4P "4 i-* R', 4(y) = xc + Ucy + DG 2 (xc)TV{(y), Vy E ti,

is a diffeomorphism from Uc onto N n Vc. In other words, 45' is a chart of N at xc and

we call P a tangential local coordinate map at xc.

As in [RhS], by shrinking if necessary the neighborhoods Uc and Vc, we can extend

Uc = U(xc) to a moving frame on Vc; that is, to a Cl-mapping U : V, --+ £(R , R") such

that the columns of U(x) form an orthonormal basis of ker DG 2(x) for each x E Vc.

Then, for y E Uc and x = ,(y) we have (x,p) E M exactly if

B(y)p = H(y)

(4.7) B(y) = Ai(P(y))Di(y), H(y)= G(-(y)).

Hence, if x, E 1V then necessarily rank A,(x) = r for x E R n in some neighborhood of x,

and thus. by restricting again, if needed, the neighborhoods tic and V, we find that (4.7)

represents for y E ti, the reduction of (4.1) locally near x,.

For the computation we need to be able to evaluate 4i(y) and D5(y) for y E tic. There

are various possibilities for computing x = 4P(y) for given y. For example, as discussed in

I19



[Rh88], we may use the QR-factorization

1(4.8) DG X T= (Q1, Q2) (R)
where rge Q2 = ker DG2(x,)T and then set UC = Q2. Now, for any given y E R r with

sufficiently small norm the chord Newton algorithm

Eval 5: Input: x, R, Q,

while 'no convergence'

solve RTz = G 2 (x) for z;

set x :=x- Qlz;

Output: x.

converges to 0(y) E N and hence implements the tangential coordinate system.

For the computation of DO(y) at any y E U, note that

(4.9) (Uc)TDP(y) = (Uc)TUc + (Uc)TDG2(x C)TDb(y) = Ir.

Moreover, because of DG2(,(y))Dq(y) = 0 it follows that Di(y) = U(o(y))K(y) for some
nonsingular K(y) E £(Rr). Together with (4.9) this implies that K(y) = U(P(y))TD,(y)

and therefore that

(4.10) D (y) = U(4(y))(Uc) T U(4(y))) - 1.

Clearly, since U : Vc --+ £(Rr, R') is of class C1 , the same holds for DO. But it turns

out that we do not need U(x) to be a C'-moving frame on a neighborhood of x, on N. In

fact, suppose that U(x) E £(R', RP) represents for x = O(y), y E 14, an arbitrary basis

matrix of ker DG2(x) and that U(xc) = U(x,). Then we have U(x) = U(x)Q(x) with

some nonsingular Q(x) E £(R 7 ) and hence

D5(y) = U(x)((UC)T U(X))- 1 = ()Q(X)((UC) T T(x)Q(x)) - 1

(4.11) = U(X)((Uc)T U(X) -l.
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While for points x in a neighborhood of a fixed point x, the particular choice of the

basis matrix U(x) does not matter, the orientation of U(hi) = c does play a role when

we move from xC to another "current" point !,. The compatibility condition for charts on

a C' manifold requires at least that UC = U(i,) tends to [TC = U(x,) when zi converges

to x,. This can be guaranteed by applying the moving frame algorithm of [Rh88] in the

construction of the new basis UT. However, when (4.1) is a nonsingular DAE of index 1

and hence when one of the augmentation procedures of section 2 can be applied to the

reduced system (4.7), then it suffices to ensure that both bases have the same orientation;

that is, that

(4.12) det (Uc)TUc > 0.

This As certainly ensured by the moving frame algorithm. But in practice, it was found

advantageous to apply a simpler heuristic procedure. Let U = Uc(1, 1,..., 1)T be the

"diagonal" vector of the positive octant of the basis Uc. Suppose that a new basis matrix

Uc has been computed with the columns ila,... , i. Then we replace the vector ili by -ii'

whenever (uc)Tiii < 0 for any i = 1,... , r. This certainly guarantees that (4.12) holds for

the modified basis.

As indicated, if (4.1) is a nonsingular DAE of index 1 then one of the augmentation

procedures of section 2 will be applied to the reduced ODE (4.7). In practice, it is useful

to work with a larger augmentation (2.14) rather than with (2.8) in order for the process

to function also near higher order singularities than just standard impasse points. For

this the augmentation (2.22) with q = 2 was chosen for which v(y) and y(y) are easily

determined by (2.23).

For the solution of (4.1) subject to some initial condition x(0) = x ° E N the augmenta-

tion is constructed at certain computed points xc along the trajectory. At these points the

local coordinate map (4.6) is obtained and hence the reduced system (4.7) has the form

BCp = Hc, BC = AI(xC)UC, H' = G,(xc)
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There are various ways for computing suitable vectors b, cl, c2 to ensure that the matrix

of the augmented system (2.22); that is, here(BC -Hc e t1  V 2  /0 0\

(4.13) cf 0 0) Wl w2 = 0

c 0 0) z2 0

is nonsingular. For relatively small dimensions r we may use, for instance, the singular

value decomposition

{ VL(Bc, -H)VR = (E,0),
(4.14) VL- VErxr =.,)r+lxr+l

V :: E R VR  E R. E = diag (al, ... , a).

Let e' n , k = 1,... , m, denote the natural unit-basis vectors of R'. Then, with

VR ,- = (r VRe;(+
1  12

we choose the augmenting vectors

Ul  U 2
(4.15) e = Vi = l 12C 2 = I1 -112'

where the sign of e will be addressed shortly. Under the assumption that rank (B', -HC)

r - 1, the matrix of (4.13) is nonsingular if and only if w2 + w2 # 1. In fact, for any null-

vector w = (qT, ,rj)T E Rr+2 of (4.13) we have

(4.16) aiqi=0, i1,... ,r-1, a,4rr+77=0, for () =viTR (q)

Hence, in the case of rank (BC, -H') - r we see that a, > 0 and therefore that q = 0

whence q = Aul, = Awl and 0 = clq = A; that is, w = 0. When the rank of (BC, -Hc)

is r - 1 then (4.16) implies that 4 = 4 and therefore that

0 = uTq = qru TU2 + uTi,

= q = rU 2 2
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where, because of the orthonormality of the vectors VRer.i1 and I'Rc the determinant

of the matrix equals w2 + W 2 - 1. Hence, if this determinant is nonzero then we have

again u' = 0 while, it is readily seen, that in the case of a zero determinant the matrix

may indeed be singular. Note that rank (Bc, -Hc) > r - 1 obviously holds not only at

standard impasse points x,.

For the choice of the direction of the vector e of (4.15) suppose that Bc is nonsingular;

that is, that we are not exactly at a singular point of the reduced system. Then a block

LU-factorization of the matrix of (4.13) shows that

(4.17) det c 0 0 = det Bcdet (cl,c 2 )(BC)-l(HC, -c).

2C 0 0)

The solution of the a-,gmented system (4.13) gives

(4.18) 12 = (C1 , C2 )T(t,1 , V2 ) = (cl- C2 )T (Bc)- (HC, -e) (U1: W2)
In accordance with (2.23) we compute now

(4.19) v = 2c = det .

Zl Z2  V2 Zl Z2

Thus (4.17 - 19) imply that

/BC -H' e

(4.20) sign det cr  0 = sign det BC sign det -j.

In line with the theory of section 2 we choose the augmenting vector e such that the left

side of (4.20) remains positive. In other words, we use thc factorization of the matrix of the

augmented system (4.13) to monitor the sign of its determinant and replace the computed

z1 and Z2 by their negative values when that determinant is negative.
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For the computation of the solution of (4.1) with the initial condition x(0) = x° we use

a standard explicit Runge-Kutta solver such as RKF-45. The algorithm for one step along

the solution of (4.1) then has the general form:

SingDAE: Input: Current point x,, tolerance tol,

suggested step h; minimal step hmin, step counter k;

1 Compute the QR-factorization (4.8), set Uc = Q2 and yc = 0;

2 With B(y,) = Al(x,)Uc compute the augmentation vectors (4.13);

3 Solve the augmented system (2.17) to obtain IC = -(xr);

4. Take a Runge Kutta step for (2.12) with y,. h, tol to obtain y". ]new:

5. If 'Step not accepted' then

replace h by h/2 and for [hi > hmi, go to 2, otherwise error return:

6. Step acceptable: Call Eval-P to obtain x" = 4i(y") E N;

8. Use (4.10) to compute D P(y") and B(y") -AI(xn)D P(yn);

9. Solve the augmented system (2.17) to obtain -yn

10. Output k = k + 1, h = hnew, x', 7c, ,n;

11. If 'sign -yC 54 sign *y"'then

singular point passed, if desired, call root finder to compute the point.

The Runge Kutta solver in step 4. requires a subroutine for computing the right hand

V(y) of the reduced explicit equation (4.7). This is handled by a subroutine of the form:

Eval v: Input: Q1, and R,y;

1. Use Eval-4 to compute x = 4(y);

2. Use (4.10) to compute Di(y) and B(y) = Al(x)DP(y),

3. Form the augmented system (2.17) and solve;

4. Use (2.18) to compute v(y) and 7(y);

5. Output: ?-(y). -,(y).
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When - has different sign at two consecutive points, say, xk and x k 1l indicating the

presence of a singular puint, then a root finder can be applied to determine the step h from

xk which gives -y(y) = 0 and hence which provides the singular point. For this a simple

algorithm of the Dekker-Brent type (see [B73]) has been used. If a standard impasse point

has been passed then xk and xk+l lie on trajectories with opposite orientation. Hence, in

order to proceed from xk±1, we have to change the sign of the step h. At higher order

singular points this may or may not be required.

The routine 'SingDae' computes a new augmentation for each Runge Nutta step. This

has been found adequate in smaller applications. However. for larger problems it is desir-

able to retain the same augmentation for several Runge Kutta steps. For this the condition

of the linear augmented system may be monitored. This is easily done in step 4 of 'Eval

v' or in step 9. of 'SinDae Step'. An additional check is the rate of convergence of the

chord-Newton process of 'Eval '. Whenever one of the.o tests indicates that the augmen-

tation has become unreliable then the output of 'SingDae' is not accepted and the routine

is restarted with a new augmentation.

There should be no need to enter into the details of such a modification of the process.

The approach is similar to that employed in [PR91].

5. Numerical Examples.

As noted in the introduction, ilnlpasse points for DAE's arise frequently in nonlinear

circuit problems. As an example we consider a simple circuit consisting of a nonlinear

resistor, linear capacitor, and linear inductor in parallel. The characteristic of the resistor

is given by u = i + iP where i and u denote the corresponding branch current and voltage

drop. respectively. The example was considered earlier by F. Takens (see [T76]) and again

in [RR92] and is modelled by the DAE

=
00 0 1. -3X2(5.1)

0 0 00 X1X2 + X3
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Here xj = ij, j = 1,2,3, are the currents in the three branches, x4 = u is the voltage drop,

and, for simplicity, the capacitance and inductance were normalized to one. It is readily

verified that (5.1) is a DAE on all of R4 with r = 2 in the sense of Definition 3.1.

In the notation of (4.1) the constraint manifold (4.2) is here given by

(5.2) N = {x E R : G 2(x) = 0}, G2 (x) = X + X2 + x 3
kX4 -- I )-

In this case we can define the following globa.l coordinate mapping on N

, N'
Y1Y

(5.3) iP : R 2  --+N , 4i(y) = - yl 2 )

-Y, + y2

and hence the system

(5.4) 2y 0
3 ( y, 0Y2

cor. Atutes a (global) reduction of (5.1).

Clearly, (5.4) is a nonsingular ODE for all y E R2 with Yi # 0. Moreover, all points

of {y E R2 : yj = 0, y 1- 0} are standard singular points of (5.4) while at y = 0 the

condition (2.3) is violated. Thus (5. 1) has the one-dimensional submanifold {x E R4 ; x =

(0, , - y)r, E R, 34 01 of standard impasse points while x* = (0, 0, 0, 3) is a higher

singularity.

A closer analysis of the example in [RR92] shows that the singularity at x* has a

different character for the four cases (i) -t > 1/8, (ii) 1/8 > -y > 0, (iii) -' = 0, (iv) -Y < 0.

In particular, for (ii) - (iv) the point x* is a funnel point (see [T76]).

Figures 1 - 3 show computed results obtained with the algorithm of Section 4 for the

three values 7 = 1.0, 0.0625,-1.0. In each case the impasse points x = (0, ,I )T

for > 0 are accessible while those for < 0 are inaccessible. Moreover. for - = -1.0
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the funnel-nature of x* is clearly visible, but recall that at x* the derivative i" becomes

infinite and hence no Cl-solution passes through that point. The results certainly show

that already very simple circuits may have a relatively complex singularity behavior.

As a second example we consider a two-phase plug flow problem described by Byrne

and Hindmarsh ([BH87], see also [HLR89]). The equations are given in the form:

p(R - y)2x/--(2.5 log[ Pv _- 5] + 10.5)

- bQo - -- QC0(1 - b) = 0,

2 R Y)Vog p -- -s

+ 3Ry - 2.125y2 - 13.6Rp 7 ) - Qa = 0,

where P' is the time-derivative of P. With xI = P, x 2 = 1/v/-P ', and X3 = yv/c-P ' these

equations become

X2 X
2x1 + 1 = 0

(5.5) x 1(4.2 + log(cIx3 - 5))(1 - x 2x 3 )2 - c2 X2 (bxi + c4 (1 - b)) = 0

X3((2- X2 3 )log(cIX 3 -5) + (2.4- 1.7X2 x 3 ) - C3 = 0.

Here. after scaling the time by a factor 10- 7, the constants are

R p R pQo 10.88 0.4pQa
Cl2 , c2 = 43 -t , 10- POp 2 2.57rpRcl' Cl  -rwjRcl

As in [HLR89] we used the values

R = 45.72, p = 0.814, =0.098, b = 0.345,

Qo = 1.7153 x 106, Qa =3.027 X 105, Po = 1.378 x 10s

for which

cl -= 2012.47, c2 = 19.7157, Ca = 3.48464, c4 = 13.78
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It turns out that the system (5.5) has a singularity at x* = (O,0,x*)T, with x =

0.236849. More specifically, the system has index one in the sense of Definition 3.2 and for

the reduced ODE, x* is a basic 1-singular point. But, since the form (2.6) is zero at x*,

this point is not a standard singular point. In fact, x* corresponds to a hysteresis point

for stationary equations.

The code was applied to the system (5.5) starting from the point

S0= (13.78, 0.42256012, 0 .24 9 213 3 9 )T

I given in [HLR89]. The resulting trajectory if shown in Figure 4. The singularity y* is
reached for t* = 1.0958 where the derivative y' becomes infinite. At the singular point

the flow is choked and hence the part of the trajectory beyond that point is physically
meaningless. But it is noteworthy that the code has no difficulty in passing through that

point.
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